If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-22=0
a = 8; b = 0; c = -22;
Δ = b2-4ac
Δ = 02-4·8·(-22)
Δ = 704
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{704}=\sqrt{64*11}=\sqrt{64}*\sqrt{11}=8\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{11}}{2*8}=\frac{0-8\sqrt{11}}{16} =-\frac{8\sqrt{11}}{16} =-\frac{\sqrt{11}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{11}}{2*8}=\frac{0+8\sqrt{11}}{16} =\frac{8\sqrt{11}}{16} =\frac{\sqrt{11}}{2} $
| 9z-5z=4 | | 30/10x=-30/10 | | 2(x-1/2=8+2x | | 344=-16x^2+96x+190 | | 3/4e+8=11 | | 3x-18-8x=-2+10+1 | | -7(-9x-22)=(x665) | | 4h+5=-9h | | 0=30x^2-15x-30 | | 3(y+3)=y+13 | | 2(3+2x)=x-4 | | 2x-3)/4=9 | | 15x^2-32x-40=0 | | 2^(x+6)=16^(2x) | | 2(x–1)=3(x–4) | | 1/12*x=12 | | 8x+5=5x–7 | | 2(4x-8)=44 | | 2x+1=(x+13)/3 | | 7m=3(5m-8) | | 2(12-3x)=9(7x+18) | | 92=262-v | | 7(4x-3)+2(6x+8)=6(5x-4)-3(2x-6)+1 | | 6x-11=-2x | | -u+159=98 | | (s+6)(6s+8)=0 | | 34+m=28 | | 2(x-3)+1/2(7+2x)=1/2+3(x-1) | | -5(x-5)=40 | | -10x2-6x+5=0 | | x÷3+8=10 | | 2x-46=4646 |